Styles in Tiles

Developing Spacial Sense

Outcomes

- To experience a rich task that integrates mathematical strands and provides an opportunity for various ways of thinking.
- To provide an opportunity for parents to explore spatial relationships with their children.
- To explore the issues of gender equity in careers.

Overview

Spatial sense and gender equity are related because spatial sense is something that we often teach our sons, but might not teach our daughters. Spatial sense is encouraged through the toys and chores we give our children. Boys often get to experience sandboxes, building materials like Legos and Erector Sets, and opportunities to figure out spaces by packing equipment and putting kits together. Girls often have less opportunity to explore spatial relationships.

The module starts out with a discussion of tiles and how they are used in homes and businesses. This transition into the topic of the module's investigation gives participants a chance to get settled into the task. It sets the stage for the problem posed in "Styles in Tiles".

After the discussion, the main problem is introduced. The problem is read by all and discussed so that there are not as many misunderstandings about the problem. The problem is to design a $20^{\prime \prime}$ by $22^{\prime \prime}$ tabletop out of tiles. There are 3 sizes of tiles: $3^{\prime \prime}$ by $3^{\prime \prime}, 3^{\prime \prime}$ by $4^{\prime \prime}$, and $4^{\prime \prime}$ by $4^{\prime \prime}$. The sizes were chosen so participants cannot use all the same size of tiles without doing some cutting. Participants are to design what they think would be the best table. The tiles can be different colors and they can be cut to form interesting patterns. Each cut costs an extra 50 cents. Many beautiful designs come out of this activity. Time is provided to share the designs and costs, and what elements are important in the design. The mathematics that was used to design and analyze the cost of the table is discussed.

After enjoying all of the designs, the participants explore the idea of gender equity. Some time is spent brainstorming the careers that are seen as male-oriented or female-oriented. The purpose of their discussion is to open participants' thoughts to limitations that they may be placing on their children and their career choices.

The facilitator then makes connections between the topics of the workshop and the district curriculum. There could be a discussion about what opportunities the district provides for discovery of careers and the necessary steps to prepare for them.

There are several activities to take home and enjoy as a family.

Mathematics Background

The mathematical focus of this module is:

- Geometric Design
- Cost Analysis

The equity focus of this module is:
Gender and Career Issues

Geometric Design

The basic problem of this module is to design a table out of tiles. The tiles and tables have dimensions that make it necessary to use different sizes of tiles in order to cover the table. The designs of the tables are limited only by one's imagination. Much of the mathematics in the problem is done intuitively. How did participants decide which tiles to use? They probably used their knowledge of factors. Since 3 does not divide evenly into 20, but 4 does, most participants start with the 4×4 or 4×3 tiles. What divides evenly into 22? Neither 3 nor 4 . So participants have to take away a row of 4×4 tiles and put in another size. The problem is accessible to all learners because everyone can make a design of some sort, and yet can be very challenging to the participant who strives to find just the right design.

Cost Analysis

The cheapest table is built with 204×4 tiles and 104×3 tiles. This configuration is cheaper because there are no cuts. The cost is $20 \times \$ 3+10 \times \$ 2.50=\$ 60+\$ 25=\$ 85$. If the 4×4 tiles are used throughout, it is then necessary to buy 8 more $4 x$ tiles and to cut 3 of them in half. Thus the cost is $\$ 60+8 \times \$ 3+3 \times \$.50=\$ 60+\$ 24+\$ 1.50=\$ 85.50$. If the last piece $(1 / 2$ of a $4 \times 4)$ can be sold or used else where, it would be a more cost effective way to tile the table. Is there a most expensive table? Tables can always get more expensive by using more cuts.

Which tile is the cheapest? In order to compute this, participants need to find a common unit for comparison. The easiest is 1 square inch. The 3×3 tile covers 9 sq. inches, so $\$ 2.00$ divided by $9=$ $\$.22$ per sq. inch. The 3×4 tile covers 12 sq. inches, so $\$ 2.50$ divided by $12=\$.21$ (rounded from .2083). The 4×4 tile covers 16 sq. inches, so $\$ 3.00$ divided by $16=\$.19$ (rounded from .1875). Thus the 4×4 tiles are the cheapest.

Gender and Career Issues

Boys and girls tend to do equally well in mathematics through about the 7 th or 8 th grade. At that time, there starts to be a sex-related difference in mathematics achievement. Some of it has been attributed to spatial sense (Fennema and Sherman), and some of it has been attributed to the preference that girls have for learning through group interaction. The resource section lists several articles on the relationship between mathematics achievement and spatial visualization. Also, doing a search for mathematics and girls provides interesting reading on the internet.

Room Setup

- Desks or tables arranged in groups of 4
- Tables for sign-in, supplies, estimations, and snacks
- Overhead projector and screen
- Chart paper on easel
- Poster of the agenda

Materials

Facilitator	Transparencies
- Overhead projector	BLM 1: Welcome
- Overhead pens	BLM 26: Styles in Tiles Problem
- Transparencies, blank	BLM 29: Gender-Career Connections
- Chart paper	BLM 32: Leading Occupations
- Chart markers	BLM 33: NCTM: Roles of Families
- Masking tape	BLM 34.1: Designing a Table
- Timer (optional)	
- Estimation questions (prepared by facilitator)	
- Inexpensive prizes	
Participant	Handouts
Individuals	One per participant for class
- Paper	BLM 26: Styles in Tiles Problem
- Pencil	BLM 27: Grid for Tile Design
- Reflection	BLM 28.1-3: Optional Tile Samples
- Scissors	BLM 29: Gender-Career Connections
Groups	BLM 30: Reflection Questions
- Chart paper	BLM 31: Pay Scales
- Chart markers	BLM 34.1-2: Designing a Table
- Pattern Blocks (tub of at least 200)	One per participant for home
	(make packet for easy distribution)
	BLM 35: Opposing Sides
	BLM 36: Drawing Blocks
	BLM 37: Rotating Letters
	BLM 38: Isometric Grid

Timing

2 hours and 10 minutes

Preparation and Timing (2 hours and 10 minutes)

Part 1: Getting Started (10 minutes)

Set-up on tables:

Estimation activities, snacks, sign-in sheet
Display transparency from workshop one:
BLM 1: Welcome

Part 2: Setting the Stage (5 minutes)

No handouts or transparencies
Part 3: Styles in Tiles (55 minutes)
Make transparency of:
BLM 26: Styles in Tiles Problem
Make copies for each participant:
BLM 26: Styles in Tiles Problem
BLM 27: Grid for Tile Design
BLM 28.1-3: Optional Tile Samples
Part 4: Gender-Career Connections (45 minutes)

Make transparency of:

BLM 29: Gender-Career Connections
BLM 32: Leading Occupations
Make copies for each participant:
BLM 29: Gender-Career Connections
BLM 30: Reflection Questions
BLM 31: Pay Scales
Part 5: Connections (5 minutes)
Make transparency of:
BLM 33: NCTM: Roles of Families

Part 6: Take Home Applications (5 minutes)

Make transparency of:

BLM 34.1: Designing a Table
Make copies and prepare a take home packet for each participant:
BLM 34.1-2: Designing a Table
Optional:
Make copies and prepare a take home packet for each participant:
BLM 35: Opposing Sides
BLM 36: Drawing Blocks
BLM 37: Rotating Letters
BLM 38: Isometric Grid
Part 7: Closing (5 minutes)
No handouts or transparencies
Prizes and reflection / evaluations (provided by the evaluation team)

Facilitator Resources

Books

Standards 2000 Project, Principles and Standards for School Mathematics, The National Council of Teachers of Mathematics, Inc (NCTM), 2000, P. 378, ISBN 0-87353-480-8, www.nctm.org

Space Visualization, Addison-Wesley Publishing Co. 1986.
Mathematics and Gender. NY Teachers College Press. 1990, Changing Perspectives. Leder, G p. 149-168.

Articles

Fennema, E and Sherman, J. Sex-related Differences in Mathematics Achievement, Spatial Visualization and Affective Factors, Research Journal. Vol 14 p. 51-71.

Internet Connections

Women's Pay Issue Websites (site addresses updated 5/28/03):

Equal Pay Is an Issue for All Working Women. AFL-CIO
http://www.aflcio.org/yourjobeconomy/women/equalpay/
20 Leading Occupations of Employed Women 2001 Annual Averages. U.S. Department of Labor, Bureau of Labor Statistics. Women's Bureau. March 2002.
http://www.dol.gov/wb/wb pubs/20lead2001.htm
U. S. Department of Labor. Women's Bureau.
http://www.dol.gov/wb/
The Facts About Pay Equity. Employment Policy Foundation. March 1999, Volume V, No. 3.
http://www.epf.org/ff/ff990315.htm
What is Pay Equity? Virginia National Organization for Women. October 1997.
http://www.now-va.org/pay equity.html

Activities

Preparation of Classroom

1. Arrange desks or tables in groups of 4-6. Set up a table with a sign-in sheet, name tags, and snacks. On another table set up estimation activities.
2. Have pattern blocks at the participant tables. Ask the participants to use the pattern blocks to make interesting patterns. These can be used as a lead into the discussion on tiles.
3. Display the transparency of BLM 1: Welcome!.
4. Prepare and display a poster with the agenda and purpose of the session.

Notes

BLM 1: Transparency

Part 1: Getting Started (10 minutes) - with children

Introductions

1. Introduce yourselves and then have the participants introduce themselves.
2. Briefly explain the MAPPS program. Have participants who are involved in the program share their experiences.
3. Go over the agenda and purpose for the session.

Part 2: Setting the Stage (20 minutes)

Patterns

1. Begin a discussion on tiles by asking who has a pattern with the pattern blocks that turned out nicely. Have them share their pattern and then ask what qualities make an attractive pattern. Then ask where tiles are used in homes. Discuss designs made from tiles. The discussion should include that tiles come in a variety of shapes, colors, and sizes. These are often mixed to create a design. Have a few examples of decorative items done in tile. (These can be found in magazines.) Ask:

If you are going to design a table top of tile, what are some things that you need to know or be able to do?
2. Some important ideas that need to be shared are:
a) Using different colors
b) Cutting tiles to fit
c) Covering the entire surface, without any gaps

If these ideas are not shared, ask questions that encourage participants to think of these things.

Activities

Part 3: Styles in Tiles (55 minutes)

Notes

Understanding the problem: (5 minutes)

1. The problem that you are about to assign is for the participants to design a table top in tile (see BLM 24). The table top is $20^{\prime \prime}$ by $22^{\prime \prime}$. Tiles come in three sizes and can be cut to enhance the design. The project is best done alone or with one partner, as it gives the participants more time to think. Begin by saying:

Tonight you are going to have the opportunity to design a tiled table top.
2. Distribute BLM 26: Styles in Tiles Problem. Have participants volunteer to read the instructions aloud, then review the important facts as a group, recording them on chart paper.
Important facts include:
a) The dimensions of the table ($20^{\prime \prime} \times 22^{\prime \prime}$)
b) The three sizes of tiles
c) The cost of each size
d) The fact that each cut costs fifty cents

Refer to the list developed in Part 2, step 1 to see if there are other important ideas to remember. Ask if anyone has an idea of how they might start this project.

Working the problem: (40 minutes)

1. Give participants several sheets of BLM 27: Grid for Tile Design and optional manipulatives of tiles cut from BLM-28.1-3: Optional Tile Samples for their work. Give participants about 30 minutes to design their table top.
2. Walk around the room, helping participants as needed. Questions for participants that are stuck:

- What do you know about the problem?
- What have you tried?
- What else could you have tried?
- What size of tile did you try?
- What worked / didn't work with that?
- Where did you get stuck?

3. Another strategy for helping participants is snooping. If they are comfortable, have them "snoop "(go around and look at what others are doing and ask them questions;) and then come back and work.

BLM 26: Transparency /Handout

BLM 27: Handout

BLM 28.1: Handout

BLM 28.2: Handout

BLM 28.3: Handout

Activities

Part 3: Styles in Tiles (continued)

Notes

4. Some strategies for the participants that finish early:

- How else might you design this tabletop?
- What criteria did you use to define "best?"
- What if you used a different criteria, how would your design change?

After 30 minutes, tell them that they have 10 minutes left to figure the total cost.

Processing the problem: (10 minutes)

1. Have participants share their designs and costs in groups of six to eight participants. Have groups choose one design to present to Chris, listing cost and reasons for choosing that design. As groups report out, have them post their design for all to see, while you record their cost and reasons on chart paper.
2. Ask:

- What qualities make up the best designs?
(Make a list of the qualities that the participants share.)
- What mathematics did you do in this problem?

See Note A.
(Make a list of the mathematics that participants share.)
3. Say:

Today there is an emphasis in mathematics classes on making connections between mathematical ideas: multiplication, decimals and geometry all being part of the same problem.

- How many different answers did we get here?
- Is there one correct answer?

This is another concept in mathematics today. In life, there is not always just one solution. A student can justify why his/her answer has validity. This activity is considered a rich mathematical task because:
a) It makes connections between strands of mathematics
b) It has multiple solutions or strategies
c) It is accessible (doable) to everyone

Part 4: Gender-Career Connections (45 minutes)

Transition

1. Start by asking:

- The tile shop owner's name was Chris in the problem that you just did. In your mind, did you assume Chris was a male or a female?

A. NOTE

Mathematics for processing the problem:

1. Computing price
2. Manipulating geometric shapes
3. Performing slides (transformations) and turns (rotations)
4. Investigating spatial relationship
5. Using fractional pieces
6. Exploring area

Activities

Part 4: Gender-Career Connections (continued)

After a pause, ask for a show of hands when you ask:

- How many thought of Chris as male? Female?
- Why would some of us think male or female?

2. Say:

Lots of things influence our lives, such as family, nationality, race and religion. We want to explore one of the most powerful influences: gender. Let's look at the impact that gender has on the kinds of jobs and careers we choose.

Gender-Career Brainstorming

1. Distribute to each group BLM 29: Gender-Career Connections for them to record female-dominated careers and male-dominated careers.
2. Say:

- In your small groups, please choose someone who will be the recorder and write down your ideas. The recorder should have the handout called Gender-Career Connections and a pencil to record the "Female-Dominated Careers" and the"Male-Dominated Careers."
- Your task is to brainstorm as many careers as you can think of that have either mostly women or mostly men in them. Try to think of at least five for each gender. You have 5 minutes to make your lists.
(Set a timer or let the participants know when 5 minutes has ended.)

3. Have each group share one of their ideas. See Note B.

Generalities

1. Have participants generalize what the female-dominated careers have in common. Then what the male-dominated careers have in common.
2. Have the groups share their ideas.
3. Display a transparency of BLM 29: Gender-Career Connections and record each groups ideas. See Note C on next page.

Notes

BLM 29: Transparency

B. NOTE

Examples of gender-related careers:
Female-dominated careers: Nursing, secretarial work, elementary school teaching, cosmetology, waitress, and child care.
Male-dominated careers: police officer, fire fighter, doctors, engineers, construction (electrician, plumber, etc.), and political offices.

Activities

Part 4: Gender-Career Connections (continued)

Group Discussion

1. After all of the generalities have been listed, facilitate a discussion with the large group of the differences between female and male careers.
2. Distribute the handout of BLM 30: Reflection

Questions and ask some or all of the following questions:

- Are there any careers on the female side that men cannot do?
- Are there any careers on the male side that women cannot do?
- Why do you think that women and men tend to choose different careers?
- What influences do family, peers, and society play in these choices?
- Who do you think generally makes more money?
(Men make around 33\% more)

3. Discuss the factors that might contribute to the inequitable pay and list these on the board.

Which high school classes generally lead to higher paying jobs/careers? (Math, science, computer/technology and male-oriented vocational classes. These classes often filter women out of high-paying careers. An interesting fact is that women have to go to college between 3 to 4 years to earn the same amount of money as a man who stopped his education as a high school graduate).
4. Distribute the handout of BLM 31: Pay Scales with the list of different pay scales for men and women in same job. Explain that this is a set of graphs showing the difference in pay, one bar represent females, and the other males.
5. Display the transparency of BLM 32: Leading Occupations which lists different occupations for men and women and have participants discuss what they see with a partner. Have them share their ideas.

Notes

C. NOTE

Examples of generalities that have been shared:
Men's jobs tend to require more physical strength, a higher level of leadership, work that is primarily with adults, employment out of doors, management responsibility, and positions requiring travel.
Women's jobs tend to be indoors, less strenuous physically, and more serviceoriented, often working with children.

BLM 30: Handout

BLM 31: Handout

BLM 32: Transparency

Activities

Part 5: Connections (5 minutes)

Notes

1. Say:

One of the skills that separates the genders in school is spatial sense. The activity that we did tonight was designed to explore spatial sense. Spatial sense is used in many careers such as photographer, artist, construction workers, designers, industrial and civil engineers, and many others. As parents, we need to make sure that our children are doing all kinds of math including spatial sense to be assured that our children are not limiting their career opportunities.
2. Connect the theme of this workshop to the standards at the national, state, or local level. If connecting to the national standards, display BLM 33: NCTM: Role of Families. Ask participants to think about reasons that students stop taking mathematics in school, and then discuss ways that they can address those issues with their children and support them in continuing their mathematical education.

BLM 33: Transparency

BLM 36: Handout

Activities

| Part 6: Take Home Applications (continued) | Notes |
| :--- | :--- | :--- |
| | |

